FCSE at ImageCLEF 2012: Evaluating Techniques for Medical Image Retrieval

نویسندگان

  • Ivan Kitanovski
  • Ivica Dimitrovski
  • Suzana Loskovska
چکیده

This paper presents the details of the participation of FCSE (Faculty of Computer Science and Engineering) research team in ImageCLEF 2012 medical retrieval task. We investigated by evaluating different weighting models for text retrieval. In the case of the visual retrieval, we focused on extracting low-level features and examining their performance. For, the multimodal retrieval we used late fusion to combine the best text and visual results. We found that the choice of weighting model for text retrieval dramatically influences the outcome of the multimodal retrieval. We tested the multimodal retrieval on data from ImageCLEF 2011 medical task and based on that we submitted new experiments for ImageCLEF 2012. The results show that fusing different modalities in the retrieval can improve the overall retrieval performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FCSE at Medical Tasks of ImageCLEF 2013

This paper presents the details of the participation of FCSE (Faculty of Computer Science and Engineering) research team in ImageCLEF 2013 medical tasks (modality classification, ad-hoc image retrieval and case-based retrieval). For the modality classification task we used SIFT descriptors and tf − idf weights of the surrounding text (image caption and paper title) as features. SVMs with χ kern...

متن کامل

Research and applications: Improving image retrieval effectiveness via query expansion using MeSH hierarchical structure

OBJECTIVE We explored two strategies for query expansion utilizing medical subject headings (MeSH) ontology to improve the effectiveness of medical image retrieval systems. In order to achieve greater effectiveness in the expansion, the search text was analyzed to identify which terms were most amenable to being expanded. DESIGN To perform the expansions we utilized the hierarchical structure...

متن کامل

Medical Image Retrieval and Automated Annotation: OHSU at ImageCLEF 2006

Oregon Health & Science University participated in both the medical retrieval and medical annotation tasks of ImageCLEF 2006. Our efforts in the retrieval task focused on manual modification of query statements and fusion of results from textual and visual retrieval techniques. Our results showed that manual modification of queries does improve retrieval performance, while data fusion of textua...

متن کامل

Image Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix

In this article, a fabulous method for database retrieval is proposed.  The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...

متن کامل

The ImageCLEF Medical Retrieval Task at ICPR 2010 - Information Fusion to Combine Visual and Textual Information

An increasing number of clinicians, researchers, educators and patients routinely search for medical information on the Internet as well as in image archives. However, image retrieval is far less understood and developed than text–based search. The ImageCLEF medical image retrieval task is an international benchmark that enables researchers to assess and compare techniques for medical image ret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012